A New Topology and Control Strategy for a Hybrid Battery-Ultracapacitor Energy Storage System
نویسندگان
چکیده
This study investigates a new hybrid energy storage system (HESS), which consists of a battery bank and an ultra-capacitor (UC) bank, and a control strategy for this system. The proposed topology uses a bi-directional DC-DC converter with a lower power rating than those used in the traditional HESS topology. The proposed HESS has four operating modes, and the proposed control strategy chooses the appropriate operating mode and regulates the distribution of power between the battery bank and the UC bank. Additionally, the control system prevents surges during mode switching and ensures that both the battery bank and the bi-directional DC-DC converter operate within their power limits. The proposed HESS is used to improve the performance of an existing power-split hybrid electric vehicle (HEV). A method for calculating the parameters of the proposed HESS is presented. A simulation model of the proposed HESS and control strategy was developed, and a scaled-down experimental platform was constructed. The results of the simulations and the experiments provide strong evidence for the feasibility of the proposed topology and the control strategy. The performance of the HESS is not influenced by the power limits of the bi-directional DC-DC converter.
منابع مشابه
Review, analysis and simulation of different structures for hybrid electrical energy storages
Output power in a hybrid power system is constant while the input power with variable characteristics that is generated by different sources. Using Hybrid Electrical Energy Storage (HEES) systems, is growing rapidly since there is an obvious need for clean energy. This paper introduces different parts of a HEES system and then proposes HEES systems which employ battery, ultracapacitor and f...
متن کاملBattery life investigation of a hybrid energy management system considering battery temperature effect
This paper investigates the effect of temperature on a hybrid energy storage system with various energy management systems. The hybrid energy storage system consists of a fuel cell, ultracapacitor and battery with associated DC/DC and DC/AC converters. The energy management strategies employed are the state machine control strategy, fuzzy frequency/logic decoupling strategy, minimization strate...
متن کاملPower Distribution Development and Optimization of Hybrid Energy Storage System
In this paper, the development and optimization of Power Distribution Control Strategy (PDCS) have been performed for a Hybrid Energy Storage Systems (HESS) of a Series Hybrid Electric Bus (SHEB). A common PDCS is based on the use of Ultra-Capacitor (UC) pack. A new simple PDCS is developed as a battery based one. For the battery based PDCS, four parameters ar...
متن کاملImplementation of Optimal Load Balancing Strategy for Hybrid Energy Management System in DC/AC Microgrid with PV and Battery Storage
The proposed paper presents the DC/AC microgrid modeling using the Energy storage units and photovoltaic (PV) panels. The modal consists of a two stage power conversion. The power is supplied to the both DC and AC loads by this PV solar panels. The suitable way to explore the PV generation model is by using manufacturer datasheet. A bidirectional converter is connected to the battery storage sy...
متن کاملModeling and Efficient Control of Microturbine Generation System With Battery Energy Storage for Sensitive Loads
Microturbine generation system is one of the most promising and a fast growing distributed generation sources. It is used in various applications thanks to high efficiency, quick start and high reliability. Combination of the microturbine and storage system (e.g. battery bank) is desirable selection to satisfy the load requirements under all conditions and hence the battery bank can play an imp...
متن کامل